الــــذَّرَّة إحدى الوحدات الأساسية لبناء المادة. فكل شيء حولنا مكون من ذرَّات. والذرَّة الواحدة بالغة الصِّغر، فهي لاتتعدى واحدًا على مليون من سُمْك شعرة . وتحتوي أصغر عيِّنة يمكن رؤيتها بمجهر عادي على ما يزيد على عشرة بلايين ذرة.

وتكوّن الذرات القوالب البنائية لأبسط المواد، وهي العناصر الكيميائية. وتشمل العناصر الشائعة : الهيدروجين والأكسجين والحديد والرصاص. ويتكون كل عنصر كيميائي من نوع أساسي واحد من الذرّات. أما المركَّبات الكيميائية، فهي مواد أكثر تعقيدًا من حيث تركيبها الكيميائي؛ إذ تتألف من نوعين أو أكثر من الذرّات مرتبط بعضها ببعض في وحدات تُسمَّى الجزيئات. فالماء، على سبيل المثال، مركب يتكون كل جزيء منه من ذرتين من الهيدروجين مرتبطتين بذرة واحدة من الأكسجين.

وتتفاوت الذرات كثيرًا في الوزن، ولكنها جميعًا تتساوى تقريبًا في الحجم. فذرّة اليورانيوم، على سبيل المثال، وهي أثقل الذرّات الموجودة في الطبيعة، يبلغ وزنها مائتي ضعف وزن ذرّة الهيدروجين الذي يُعدُّ أخف العناصر المعروفة حتى الآن. ومع ذلك فإن قطر ذرّة اليورانيوم لا يتعدى ثلاثة أمثال قطر ذرّة الهيدروجين تقريبًا.

وبالرغم من أن الذرّات تُعدُّ من أدق الأشياء في العالم إلا أنها تُعدُّ أيضًا من أعظمها قوة، فبداخلها كمية هائلة من الطاقة الكامنة. وقد استطاع العلماء تسخير هذه الطاقة في إنتاج أسلحة الدمار البالغة التأثير كما استطاعوا أيضًا الاستفادة منها في توليد الكهرباء.

أجزاء الذرّة

أجزاء الذرة. تتكون الذرة من ثلاثة أنواع أساسية من الجُسيمات، هي البروتونات، والنيوترونات، والإلكترونات. للبروتونات شحنة موجبة وللإلكترونات شحنة سالبة بينما النيوترونات متعادلة كهربائيًا. تتجمع البروتونات والنيوترونات داخل النواة، وهي منطقة صغيرة جدًا بالقرب من مركز الذرة. وتدور الإلكترونات بسرعات بالغة خلال الفضاء الفارغ خارج نواة الذرة.
بالرغم من ضآلة الذرّة إلا أنها تتكون من جُسيمات أكثر صغرًا منها. والجسيمات الثلاثة الأساسية هي: البُروتونات، والنيوترونات، والإلكترونات. ولكل ذرة عدد محدد من هذه الجُسيمات تحت الذرية.

تزدحم البروتونات والنيوترونات داخل النواة، وهي منطقة بالغة الصغر في مركز الذرة. فلو كان قطر ذرة الهيدروجين ستة كيلومترات، على سبيل المثال، فإن النواة لا يتعدى حجمها حجم كرة المضرب العادية. وما يتبقى من حجم الذرة خارج النواة هو في أغلبه فضاء فارغ. وفي هذا الفضاء، تدور الإلكترونات حول النواة بسرعة بالغة تقطع بها بلايين الرحلات في كل جزء من المليون جزء من الثانية.

وبسبب سرعة الإلكترونات البالغة، تبدو الذرّة وكأنها جامدة، وذلك بنفس المبدأ الذي يمنع مرور قلم رصاص خلال أنصال مروحة تدور بسرعة عالية.

وكثيرًا ما تقارَن الذرّات بالنظام الشمسي، فتُعتبر النواة مناظرة للشمس، والإلكترونات مناظرة للكواكب التي تدور حولها. لكن هذه المقارنة ليست صحيحة على إطلاقها. فعلى عكس الكواكب، لا تتبع االإلكترونات مسارات منتظمة مرتبة. بالإضافة إلى أن البروتونات دائمة التحرك عشوائيًا داخل النواة.

مقارنة الذرات من حيث الوزن والحجم.تتباين الذرات بدرجة كبيرة في الوزن لكنها جميعًا لها نفس الحجم تقريبًا. وأصغر وأخف الذرات على الإطلاق هي ذرة الهيدروجين. وهي تحتوي على بروتون واحد وإلكترون واحد. أما أكبر وأثقل ذرة موجودة في الطبيعة فهي ذرة البلوتونيوم. ولهذه الذرة 94 بروتونًا، و150 نيوترونًا و94 إلكترونًا. وتزن ذرة البلوتونيوم ما يعادل وزن 200 ذرة هيدروجين تقريبًا. لكن قطر ذرة البلوتونيوم يبلغ نحو ثلاثة أضعاف مقدار قطر ذرة الهيدروجين فقط.
النواة. تشكِّل النواة تقريبًا كل كتلة الذرة. والكتلة هي كمية المادة في ذرة. وتبلغ كتلة البروتون 1,836 ضعف كتلة الإلكترون. وكذلك من 1,839 إلكترونًا نحصل على كتلة النيوترون. ويحمل كل بروتون وحدة واحدة من وحدات الشحنة الموجبة، بينما يحمل الإلكترون وحدة واحدة من وحدات الشحنة السالبة. أما النيوترونات فهي غير مشحونة. وتحتوي الذرّة في أغلب الأحوال على نفس العدد من البروتونات والإلكترونات، وبالتالي فالذرّة متعادلة كهربائيًا.

البروتونات والنيوترونات أصغر بـ 100,000 مرة تقريبًا مقارنة بوزن الذرة، ولكنها تتألف بدورها من جُسيمات أكثر صغرًا يسمى كل منها كوارك. ويتكون كل بروتون وكل نيوترون من ثلاثة من جسيمات الكوارك. ويستطيع العلماء في المختبر جعل جسيمات الكوارك تتجمع وتكوّن أنواعًا أخرى من الجسيمات تحت الذرية بجانب البروتونات والنيوترونات. ولكن كل هذه الجسيمات الأخرى تتفكك وتتحول إلى جُسيمات عادية في غضون ثانية واحدة. ولهذا فلا يوجد أي منها في الذرات العادية. وقد عرف العلماء أن البروتونات والنيوترونات تتكون من جسيمات الكوارك من خلال دراستهم للجسيمات تحت الذرية. وللحصول على معلومات عن الجسيمات تحت الذرية الأخرى، انظر: فيزياء الجسيمات. وكذلك المقالات المنفصلة عن الجسيمات تحت الذرية المشار إليها في "مقالات ذات صلة" في نهاية هذه المقالة.

الإلكترونات. على عكس البروتونات والنيوترونات فإن الإلكترونات لا تحتوي على جُسيمات أصغر. وكتلة الإلكترون بالغة الصغر. وتُكتب قيمة هذه الكتلة بالجرامات، بوضع علامة عشرية يتبعها 27 صفرًا ثم رقم 9.

ونظرًا لأن الشحنات المتضادة تتجاذب، فإن النواة الموجبة الشحنة تعمل بقوة جذب على الإلكترونات السالبة الشحنة، مما يؤدي إلى بقاء هذه الإلكترونات داخل الذرة. لكن لكل إلكترون طاقة تمكنه من مقاومة جذب النواة. وكلما ازدادت طاقة الإلكترون ازداد بُعده عن النواة. وهكذا تنتظم الإلكترونات في مدارات على مسافات مختلفة من النواة حسب مقدار طاقة كل منها. فتوجد الإلكترونات الأقل طاقة في المدارات الداخلية، بينما توجد الإلكترونات الأكثر طاقة في المدارات الخارجية.

ويعطي العلماء لكل مدار إلكتروني رقمًا خاصًا به. فالمدار الأقرب إلى النواة يُسمَّى بالمدار رقم 1. وترقم المدارات الأخرى 2 ، 3 ، 4 ، 5 ، 6 ، 7 حسب الترتيب التصاعدي لبعدها عن النواة. ويشار إلى المدارات في بعض الأحيان بالحروف الهجائية. ويوجد على كل مدار عدد محدود من الإلكترونات، فلا يستطيع المدار الأول الاحتفاظ بأكثر من إلكترونين. ويستطيع المدار الثاني الاحتفاظ بثمانية إلكترونات والثالث بثمانية عشر إلكترونًا، والرابع باثنين وثلاثين إلكترونًا، والخامس بخمسين إلكترونًا، والسادس باثنين وسبعين إلكترونًا، والسابع بثمانية وتسعين إلكترونًا. غير أن هذه المدارات الخارجية لا يكتمل بها عدد الإلكترونات مطلقًا.
مدارات الإلكترونات والسلوك الكيميائي تنتظم إلكترونات الذرة في مدارات. ترقم هذه المدارات بالأرقام من 1 إلى 7 بدءًا من المدار الداخلي. ويستطيع كل مدار الاحتفاظ بعدد معين من الإلكترونات. فعلى سبيل المثال، يستطيع المدار رقم 2 الاحتفاظ بثمانية إلكترونات فقط. وفي التفاعلات الكيميائية يكتسب المدار الخارجي أو يفقد إلكترونات أو يشارك فيها.
لذرة الفـــلور سبعة إلكترونات في المدار2. تقوم الــذرة بملء هذا المدار باكتساب إلكترون من ذرة أخرى.

في ذرة النيون، المدار2 ممتلىء. ونتيجة لهذا فإن هذا الغاز لا يدخل عادة في تفاعلات كيميائية مع ذرات أخرى.

تميل ذرة الصوديوم إلى فقد الإلكترون الوحيد الموجود في المدار 3، وبذلك يصبح المدار 2 الممتلىء هو مدارها الخارجي.

خواص الذرّات

العدد الذرّي. وهو يبين لنا عدد البروتونات التي تحتوي عليها الذرة. فعلى سبيل المثال، تحتوي كل ذرة هيدروجين على بروتون واحد، ولهذا، فإن العدد الذرّي للهيدروجين 1. ويتدرج العدد الذري للعناصر الطبيعية الأخرى تصاعديا حتى يصل إلى 92 لليورانيوم، الذي يحتوي على 92 بروتونًا في كل ذرة من ذراته. وتتكون كذلك كميات ضئيلة من البلوتونيوم، الذي يبلغ عدده الذري 94، بصورة طبيعية. ويمكن إيجاد العناصر التي يزيد عددها الذري على 92 في المختبر.

يحدد العدد الذري ترتيب العنصر في الجدول الدوري. وينظم هذا الجدول العناصر المختلفة في مجموعات تتشابه في خواصها الكيميائية. للاطلاع على هذا الجدول انظر: العنصر الكيميائي.

نظائر الهيدروجين. النظائر هي ذرات لنفس العنصر لها أعداد مختلفة من النيوترونات. وللهيدروجين، على سبيل المثال، ثلاثة نظائر. البروتيوم وهو أكثر نظائر الهيدروجين شيوعًا، وتحتوي نواته على بروتون واحد. والديوتريوم تحتوي نواته على بروتون واحد ونيوترون واحد بينما تحتوي نواة النظير الثالث للهيدروجين وهو التريتيوم على بروتون واحد واثنين من النيوترونات.
العدد الكتلي. هو حاصل جمع عدد البروتونات وعدد النيوترونات في ذرة. وبالرغم من أن كل الذرات في عنصر ما لها نفس عدد البروتونات، إلا أنها قد تختلف في عدد النيوترونات. ويطلق على الذرات التي لها نفس عدد البروتونات وتختلف في عدد النيوترونات اسم النظائر.

وأغلب العناصر الموجودة في الطبيعة لها أكثر من نظير فالهيدروجين، على سبيل المثال، له ثلاثة نظائر. وتتكون النواة في أكثر نظائر الهيدروجين شيوعًا من بروتون واحد فقط. بينما تتكون النواة في النظيرين الآخرين من نيوترون واحد أو نيوترونين بالإضافة إلى البروتون. ويستخدم العلماء العدد الكتلي للتمييز بين نظائر الهيدروجين الثلاثة لتصبح هيدروجين 1، هيدروجين 2، هيدروجين 3. كما يُسمون الهيدروجين 1 بروتيوم، وهيدروجين 2 ديوتريوم، وهيدروجين 3 ترِيتْيوم.

وفي أغلب العناصر الأخف، تحتوي نواة كل ذرّة علي عدد متساوٍ من البروتونات والنيوترونات. بينما تحتوي نوى العناصر الأثقل على عدد من النيوترونات أكبر من عدد البروتونات. أما أثقل العناصر فبها نحو ثلاثة نيوترونات لكل اثنين من البروتونات. فاليورانيوم 238، مثلاً، به 146 نيوترونًا مقابل 92 بروتونًا في كل ذرة.

الوزن الذري. هو وزن الذرّة معبَّرًا عنه بوحدات الكتلة الذرية. وتعادل وحدة الكتلة الذرية التي تُسمى أحيانًا دالتون 1/12 من وزن ذرة الكربون 12. ويكون الوزن الذرّي لأغلب الذرات مُعَبَّرًا عنه بالدالتون قريبًا جدًا من العدد الكتلي. ووحدات الكتلة الذرية بالغة الصغر فهناك 602 بليون ترِليون دالتون في كل جرام.

ويُعيِّن العلماء الوزن الذري لعنصر متعدد النظائر بإيجاد متوسط الأوزان الذرية لهذه النظائر بنسب وجودها في الطبيعة. فيبلغ الوزن الذري لغاز الكلور، على سبيل المثال، 35,453 دالتون. وهذه القيمة هي متوسط الوزن الذري للنظيرين كلور 35 (وزنه الذري 34,96885) وكلور 37 (وزنه الذري 36,96590) حسب نسبة كل منهما في الطبيعة.

الشحنة الكهربائية. رغم أن الذرة تكون عادة متعادلة كهربائيًا، إلا أنها قد تفقد أو تكتسب قليلاً من الإلكترونات في بعض التفاعلات الكيميائية أو عند اصطدامها بإلكترون أو بذرّة أخرى. وينتج عن هذا الفقد أو الاكتساب ذرة مشحونة كهربائيًا تُسمَّى بالأيون، وتصبح الذرة التي فقدت إلكترونات أيونًا موجبًا بينما تصبح الذرة التي اكتسبت إلكترونات أيونًا سالبًا. وتُسمَّى عملية الفقد أو الاكتساب هذه التأين.

السلوك الكيميائي. يتحدد السلوك الكيميائي لذرة ما إلى حد بعيد بعدد الإلكترونات الموجودة في مدارها الخارجي. وعندما تتجمع الذرات لتكوِّن جزيئات، فإن الإلكترونات في المدارات الخارجية إما أن تنتقل من ذرة إلى أخرى أو تشارك فيها الذرات المختلفة. ويُعبَّر عن عدد الإلكترونات الداخلة في هذه العملية بالتكافؤ. ولذرات بعض العناصر أكثر من تكافؤ. ويعتمد ذلك على عدد ونوع الذرات التي سيتم التفاعل معها.

ويكون تكافؤ الذرة موجبًا إذا كانت تميل لفقد إلكترونات لذرات أخرى. بينما يكون التكافؤ سالبًا إذا مالت الذرة إلى اكتساب إلكترونات من ذرات أخرى. فالصوديوم، على سبيل المثال، يميل لفقد إلكترون واحد وهكذا يصبح تكافؤه + 1. أما الكلور، فيميل لاكتساب إلكترون واحد وبهذا يصبح تكافؤه - 1.

ويتكون جزيء ملح المائدة العادي من ذرة صوديوم واحدة مرتبطة بذرة كلور واحدة. وتعطي ذرة الصوديوم الإلكترون الذي تكتسبه ذرة الكلور.

يتبع.........